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Abstract

Task-oriented dialogue (ToD) systems are
designed to help users achieve specific goals
through natural language interaction. While
recent advances in large language mod-
els (LLMs) have significantly improved lin-
guistic fluency and contextual understand-
ing, building effective and emotionally in-
telligent ToD systems remains a complex
challenge. Effective ToD systems must op-
timise for task success, emotional under-
standing and responsiveness, and precise
information conveyance, all within inher-
ently noisy and ambiguous conversational
environments. In this work, we investi-
gate architectural, representational, optimi-
sational as well as emotional considera-
tions of ToD systems. We set up systems
covering these design considerations with
a challenging evaluation environment com-
posed of a natural-language user simula-
tor coupled with an imperfect natural lan-
guage understanding module. We propose
LUSTER, an LLM-based Unified System
for Task-oriented dialogue with End-to-end
Reinforcement learning with both short-
term (user sentiment) and long-term (task
success) rewards. Our findings demonstrate
that combining LLM capability with struc-
tured reward modelling leads to more re-
silient and emotionally responsive ToD sys-
tems, offering a practical path forward for
next-generation conversational agents.

1 Introduction

Conversational artificial intelligence (Al) enables
machines to engage in natural, human-like interac-
tions using spoken or written language. The rapid
advancement of large language models (LLMs)
has significantly enhanced the capabilities of con-
versational Al (Touvron et al., 2023; Abdin et al.,
2024). Trained on vast amounts of text data, LLMs
can generate fluent, context-aware responses, and
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Figure 1: Goal-driven Human-machine Interaction

follow complex instructions. This significantly
improves chat applications in both linguistic flu-
ency and handling of nuanced or open-ended in-
teractions (OpenAl, 2023; DeepSeek-Al, 2025).
Among the diverse conversational Al applica-
tions, task-oriented dialogue (ToD) systems stand
out as a specialised class to help users accom-
plish a goal through several turns of natural lan-
guage interactions (Jurafsky and Martin, 2025)
(see Figure 1). Beyond task completion, effec-
tive communication also hinges on the user’s emo-
tional experience (Picard, 1997). The user ex-
presses both goal-driven and emotional cues in
inherently ambiguous, uncertain, and noisy natu-
ral language (Feng et al., 2022). The system in-
terprets this input and estimates a dialogue state,
an internal representation of the user’s goal, func-
tionally akin to a theory of mind (Premack and
Woodruff, 1978). This state, typically represented
symbolically (e.g., slot-value pairs), supports pre-
cise, unambiguous queries to a database, which
likewise stores information in a structured, sym-
bolic format. Thus, high-performing ToD sys-
tems must (1) maximise task success by correctly
fulfilling the user’s goal, (2) enhance sentiment
by maintaining a positive emotional interaction,
and (3) minimise error in conveying database in-
formation. Related errors are termed hallucina-
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tions in natural language generation (NLG) (Juraf-
sky and Martin, 2025), word errors in automatic
speech recognition (Young et al., 2006), and rea-
soning errors in neural-symbolic systems (Garcez
et al., 2002). In ToDs, explicitly represented se-
mantics enable detection of both missing and hal-
lucinated values, and we collectively term them as
concept errors.

Designing a ToD system involves critical de-
sign and training choices that shape its ability to
understand and assist users. A key architectural
choice lies in whether to adopt a modular, end-
to-end, or agentic approach. Modular systems
separate the dialogue pipeline into components
such as natural language understanding (NLU),
dialogue state tracking (DST), policy, and NLG,
each trained individually (Young et al., 2013).
In contrast, end-to-end systems model the entire
pipeline as a single unit for reduced error propa-
gation and joint optimisation (Wen et al., 2017).
Recently, agentic designs have emerged, leverag-
ing LLMs’ reasoning capability for task-oriented
decision-making (Yao et al., 2023).

These architectures align with different opti-
misation strategies. The traditional divide-and-
conquer method trains each module in isolation.
While this approach offers a certain level of ex-
plainability of intermediate processing steps, there
could be information loss between components,
leading to overall suboptimal behaviour. Alterna-
tively, optimising the dialogue policy in the full
interactive loop can better adapt decision-making
to natural-language interaction outcomes (Feng
et al.,, 2024a). End-to-end trainable systems, if
paired with reinforcement learning (RL), can al-
low holistic user adaptation but face challenges
like data inefficiency and the need for sophisti-
cated reward design.

Emotion modeling is another essential yet of-
ten overlooked aspect of ToDs (Feng et al., 2022).
Systems may handle emotion implicitly via hidden
language representations, or explicitly through
dedicated emotion detection and response plan-
ning stages (Stricker and Paroubek, 2024). In RL,
emotion can also be integrated into training by us-
ing user sentiment as a short-term reward to guide
policy updates (Feng et al., 2024a).

The representational considerations vary across
systems. For the dialogue state, most systems
use explicit tracking to provide clear intermediate
representations for downstream tasks and database

query, though latent states are also possible (Lin
et al., 2024). Dialogue actions can likewise be ex-
plicit (Geishauser et al., 2022; Hosseini-Asl et al.,
2020), typically delexicalised (domain, intent, slot
types but no values), or implicit, encoded as latent
vectors learned by the model (Lubis et al., 2020).
While modular systems use NLG to produce lexi-
calised responses, end-to-end systems usually out-
put delexicalised responses to facilitate learning
and evaluation. However, the strong lexical capa-
bilities of modern LLMs are reducing the neces-
sity of delexicalisation in both action planning and
response generation.

Finally, training methodology critically im-
pacts system performance. Supervised learning
(SL) on annotated data offers a strong foundation
but struggles with diverse user behaviours. RL en-
ables adaptive optimisation using short-term (e.g.,
user sentiment) and long-term (e.g., task success)
rewards from simulated or real-world interactions.
A hybrid training paradigm that combines SL with
RL often best balances stability and adaptabil-
ity (Williams et al., 2017).

Together, these design axes form a rich space
of possibilities and trade-offs involving scalabil-
ity, flexibility, interpretability, and robustness. Our
contributions are threefold:

* We construct a diverse suite of ToD systems rep-

resentative of each design and training paradigm
(Figure 2), and systematically analyse them.

* We harness the advantages of different design
considerations in a principled manner and ad-
dress a previously unexplored combination of
design choices. Specifically, we build the first
end-to-end ToD system that integrates fully lex-
icalised representations, an LLM backbone, and
RL with both short-term affective and long-term
task success rewards via online user simulation.

e With our proposed method, we build LUS-
TER, an LLM-based Unified System for
Task-oriented dialogues with End-to-end
Reinforcement learning. LUSTER substantially
improves task success and reduces concept
errors compared to alternative approaches.

2 Related Work

2.1 Modular Systems

Traditional ToD systems typically follow a modu-
lar pipeline, with separate components: NLU for
user intent understanding, DST for user goal es-
timation, policy for system action selection, and
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Figure 2: ToD system training paradigms. Red arrows indicate learning signals for components in dotted boxes.

NLG for converting actions into natural utter-
ances. Systems also interface with a database
(DB) and rely on an ontology to structure sym-
bolic queries and information abstraction.

This divide-and-conquer architecture (Figure
2a) ensures clear separation of objectives and
allows component-level supervision. Modules
are typically trained independently on annotated
datasets such as MultiwOZ (Budzianowski et al.,
2018), with SL applied to NLU, DST, and NLG,
and RL applied to the policy. The interaction is
framed as a partially observable Markov decision
process (POMDP) (Young et al., 2013), and pol-
icy learning is carried out with simulated (Schatz-
mann et al., 2007; Kreyssig et al., 2018; Lin et al.,
2023) or real (Gasi¢ et al., 2013) users.

However, policies trained in isolation often mis-
align with other pipeline components during full-
system interaction. To mitigate this issue, Feng
et al. (2024a) optimise the policy within the
natural-language interactive loop (Figure 2b).

To manage the complexity of the policy out-
put space, modular dialogue policies typically pro-
duce delexicalised dialogue actions, omitting ac-
tual slot values. This abstraction simplifies policy
learning by reducing action variability. The NLG
module then realises these actions, together with
slot values from database query results, into natu-

ral language utterances (Figures 2a and 2b).

2.2 End-to-end Systems

To overcome challenges in information passing
and module coordination of modular pipelines, re-
searchers have developed end-to-end systems that
unify learning and eliminate the need for infor-
mation transmission between modules. Early ap-
proaches demonstrate the feasibility of training di-
alogue systems as a single monolithic model (Wen
et al.,, 2017). With advances in language mod-
els (LMs), researchers (Hosseini-Asl et al., 2020;
Peng et al., 2021; Stricker and Paroubek, 2024)
use decoder-only LMs to map dialogue history to
belief states, database queries, and final responses
in an auto-regressive manner (Figure 2c).

End-to-end systems typically retain the practice
of using delexicalised dialogue actions from mod-
ular pipelines. They also generate responses con-
taining placeholders (e.g., <v . food>) rather than
actual entity values. This allows weight sharing
across values of the same slot type and facilitates
corpus-based supervised learning and evaluation.
The substitution of placeholders with retrieved slot
values is handled as a separate, post-processing
operation (Figure 2c).

While these models perform competitively on
datasets, the lexicalisation of these responses is



not robust and often leads to failures in interactive
settings (Feng et al., 2024a).

Several efforts have incorporated RL into the
training of end-to-end ToD systems. Jang et al.
(2022) combine offline behavior cloning with
a critic model that evaluates and filters self-
generated delexicalised responses from an LM-
based end-to-end ToD system. Lubis et al. (2020)
tackle the challenge of the large action space in-
herent in word-level sequential decision-making
by introducing a variational model that defines a
latent action space. This abstraction enables more
tractable RL training via simulated yet still delexi-
calised interactions for an end-to-end ToD system.

2.3 Agentic Systems

The advent of general-purpose LLMs has enabled
agentic ToD systems that perform complex dia-
logue reasoning via prompting rather than task-
specific training. These models adapt to diverse
dialogue tasks via prompt engineering using task
descriptions, demonstrations, or dialogue history
under a zero- or few-shot setting. Techniques
such as prompt chaining (Wei et al., 2022) and
self-refinement loops (Yao et al., 2023) enhance
reasoning and consistency, though at the cost of
higher computational complexity.

ToD system developers have leveraged this abil-
ity to construct both individual components, such
as slot filler (Sun et al., 2024), dialogue state
tracker (Heck et al., 2023), and emotion recogni-
tion (Feng et al., 2024b), as well as agentic sys-
tems using carefully designed prompts (Li et al.,
2024). Vukovic et al. (2024) demonstrates that
chain-of-thought prompting can also be used to
automate ontology construction, significantly re-
ducing human effort in domain specification.

Despite their flexibility, agentic systems come
with trade-offs. LLMs operating in zero- or few-
shot settings remain sensitive to prompt phrasing,
often exhibit unstable behaviour across sessions,
and lack consistent control over generated out-
puts (Errica et al., 2025). They also underper-
form compared to models with task-specific op-
timisation, particularly in high-stakes or domain-
intensive scenarios where robustness and consis-
tency are critical (Hudecek and Dusek, 2023).

In summary, modular systems offer inter-
pretability but suffer from information loss across
modules; end-to-end systems provide unified
learning but face challenges in out-of-corpus gen-

eralisation; agentic approaches offer flexibility
and low training overhead but still lag in relia-
bility and controllability. Their complementary
strengths motivate a unified approach explored in
this work to combine all potential benefits.

3 LUSTER: LLM-based Unified System
for Task-oriented dialogue with
End-to-end Reinforcement Learning

3.1 Inference with LUSTER

As illustrated in Figure 3, LUSTER performs se-
quential inference over core ToD subtasks, ap-
pending each output to the prompt to guide the
next generation step. This auto-regressive process
enables dynamic integration of contextual and af-
fective cues. Motivated by prior work in affective
modelling in ToDs (Feng et al., 2024a), LUSTER
augments traditional ToD subtasks (DST, policy
optimisation, and NLG) with two additional tasks:
user emotion recognition and system conduct (af-
fective behaviour) selection. This supports emo-
tionally intelligent and goal-aligned responses.
Unlike prior (L)LM-based end-to-end systems
that separate generation steps with special to-
kens (e.g., <|state]|>), LUSTER adopts a
lightweight prefix-based format inspired by Li and
Liang (2021). Each task starts with a natural-
language cue (e.g., “state :”) and ends with a
standard end-of-sequence token. This simplifies
implementation and improves compatibility with
LLM tokenisers. We also explored rare or reserved
tokens as markers, but they are often skipped or
misgenerated due to LoRA-induced numerical im-
precision, destabilising downstream behaviour.

Step 0: Dialogue History Encoding At the ¢-
th turn, LUSTER receives a dialogue history H,
constructed as an alternating sequence of user and
system utterances, concluding with the most re-
cent user input:

H: = {user : uusr,1, System : usys,1, . .., user : uusr,¢ } (1)

Step 1: User Emotion Recognition The model
first predicts the user’s emotional state e; by se-
lecting the token from a discrete set of emotions
FE corresponding to the highest logit score:

e; = argmax, . LLM(H,, “emotion :”).logit(e)  (2)

Step 2: Active Domain Recognition Next, the
model identifies the active domain d; from the pre-
defined set of domains D:

d; = arg max . p LLM(H¢, e¢, “domain :”).logit(d) (3)
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Figure 3: LUSTER model architecture and supervised training objectives.

Step 3: Dialogue State Tracking The dialogue
state ds; is generated for the selected domain only,
in order to limit memory usage and maintain rele-
vance. All m slots of the active domain are filled
according to the ontology with either: 1) a freely
generated value for non-categorical slots, 2) a se-
lected value from a candidate list for categorical
slots, or 3) “unknown” if the slot is not mentioned
by the user.

C)
&)

dst == {sloty : values; ...; slot,, : value, }
ds¢ = LLM(Hz, ex, d¢, “state :”)

Step 4: Database Query The generated state is
then used to retrieve the list of matching entries
ent from the database. The database description
db; includes the number of matching entities and
all attribute-value pairs of the first matched entity:

ent = database.query(d:, ds:) (6)

db; = {len(ent) found : attr val V(attr, val) € ent[0]} (7)
Step 5: Dialogue Action Prediction Next, the

model generates dialogue actions da; as a set of

intent-slot-value tuples:
da; = {intent; slot; values; ...

}
dCLt = LLM(;L[t7 €t, dt, dSt7 dbt, “action I”)

®
®

Step 6: System Conduct Selection The sys-
tem’s emotional stance ¢; is then selected from a
set of conducts C":

C¢ = arg max LLM(Ht, €, dt, dSt, dbz, dat,

ceC (10)

“conduct :”).logit(c)

Step 7: System Response Generation Finally,
LUSTER generates the system’s natural language
response usys ¢ conditioned on the full context:

usys’t = LLM(?‘[t7 €t, dt, dSt, dbt, dat, ct“system I”) (1 1)

3.2 Fully Lexicalised Representation

Different from how lexicalisation is involved in
the generation process of modular and end-to-end

systems as discussed in Section 2.1 and 2.2, LUS-
TER uses fully lexicalised representation through-
out the generation, leveraging the world knowl-
edge and generative strength of large pretrained
LLMs (Figure 2d and 3): (1) Dialogue actions
include slot values along with intents and slots.
(2) Responses are generated directly in lexicalised
form, eliminating placeholders and subsequent
substitution. (3) The database results are repre-
sented as structured, value-rich entity descriptions,
not just query summaries (e.g., “3 options found”).

LUSTER’s lexicalised approach simplifies in-
ference by eliminating the need for post-hoc lex-
icalisation. By using fully lexicalised representa-
tions and natural-language prefixes (e.g., state:”),
we avoid modifying the LLM’s vocabulary or re-
sizing its embedding and output layers. This
means these layers do not need to be fully re-
trained, even when using low-rank adaptation
(LoRA Hu et al. 2022). As a result, the number of
trainable parameters is significantly reduced, mak-
ing RL via online interaction feasible. Moreover,
the lexicalised setup enhances modularity and fu-
ture compatibility, enabling easy substitution of
the LLM backbone as newer models emerge.

3.3 Training Objectives
3.3.1 Supervised Learning

An overview of LUSTER’s training procedure is
shown in Figure 2d. We begin by training the
model to imitate successful demonstrations from
human operators recorded in the EmoWOZ corpus
(Feng et al., 2022). Each training example is for-
matted from a dialogue turn as a fully lexicalised
sequence & = {Hy, e, dy, dsy, dby, dag, ¢, Usys ¢},
following the inference structure described in Sec-
tion 3.1. Here, z is a token sequence of length
n = |z|, denoted by (z1, z2, ..., Tp).

We train LUSTER using the standard causal
language modelling objective (Radford et al.,



2019). Given a dataset X = {z', 22, ..., z!¥},
we optimise the model parameters 6 to minimise
the negative log-likelihood of the tokens in each
sequence:

n x| nj

p) = [[ p(ile<i), Lsp==> > logps(allal,)

i=1 j=1i=1
(12)
This objective provides a reliable initialisation by
training the model to generate coherent comple-
tions based on dialogue context and intermediate
representations from dataset demonstrations.

3.3.2 Reinforcement Learning with Emotion
Reward Signal

Beyond large-scale pretraining and model size,
LLMs’ effectiveness also stems from RL-based
alignment with human preferences (Ouyang et al.,
2022b). Language generation can be framed as
a sequential decision-making process, where the
model (policy ) generates tokens (actions a)
based on context (states s) following a ~ 7 (-|s),
and a reward model, often trained on human pref-
erence, guides optimisation. We adopt a simi-
lar RL set-up, using user sentiment as a reward
to encourage system responses that are both task-
effective and emotionally appropriate.

Episode Formulation Here, an episode corre-
sponds to the generation of the system response
at the t-th user-system interaction in a dialogue,
resulting in the following full sequence:

{Ht, ee, di, dse, dbe, day, e, usys,t } (13)

To keep episodes manageable and avoid excessive
context length, we define the initial state as:

s = {HMs, e, ds, dst, db; } (14)

Note that superscripts denote the time step in the
generation of a single turn, while the subscript ¢
refers to the dialogue-level time step, which re-
mains fixed during that turn.

Starting from the initial state, each action token
al is generated from the policy 7y (al|s}). We ob-
tain the reward /™!, and the state is incrementally
updated: l Lo

sy = {st,a:} (15)
At the end of the turn-level generation, we have a
list of L action tokens:

ad Tt = {dat, ct, usys, } (16)

The LLLM-based policy my then generates an ac-
tion (i.e., text token) according to 7y (al | st).

Reward Modelling via Emotion Advantage
We expect the availability of user utterance and
emotion prediction from a user simulator (US).
Given the system response usys ¢, the US produces
the next user turn and emotion prediction:

uusr,t+1, €e+1 = US(usys,t) a7

To explore diverse behaviours, we sample mul-
tiple turn-level trajectories from the same initial

state:
L

a7t = {day, &, disys. o} ~ [ [ e(atlst)  (18)
=1

One of the sampled sequences is then randomly
selected to continue the conversation with the US.
Each sampled response tys; is evaluated by the
US to produce an emotion label é;41, which is
mapped to a valence-based numeric reward with
the mapping function M (-): +1 for positive, 0 for
neutral, and —1 for negative. Intermediate rewards
rBL=1 — 0, and the final reward is normalised

across samples:
b M(@) ~EM(@)

o(M(&))

19)

We refer to this signal as the emotion advantage,
as it captures how much emotionally better (or
worse) a generated response is compared to alter-
natives under the same context. In practice, we
drop the set of sampled responses from the same
context that lead to the same user emotion (zero
variance in M (é;)).

User Emotion Optimisation We aim to max-
imise the expected return of the policy my across
the sampled trajectories with turn-level discount
factor Y-

L—-1
J(O) =Ery > umri (20)
=0

Gradients are estimated using the policy gra-
dient theorem and the advantage function
Agr, (s, al) (Sutton et al., 1999):

L—-1

VoJ(0) = Ex, > Vologmo(at|si)Axy(st,ar)  (21)

1=0

In practice, we apply the Proximal Policy Opti-
mization (PPO) algorithm (Schulman et al., 2017)
to approximate the direction of the gradient above
with a gradient of the surrogate loss. PPO sta-
bilises training by clipping large policy updates
and penalising Kullback-Leibler (KL) divergence
between successive policies. For full implementa-
tion details, please refer to Appendix A.2.



3.3.3 Reinforcement Learning with
Multi-turn Reward Signal

While single-turn RL can encourage the system to
elicit positive user emotion, effective goal fulfill-
ment requires planning over longer horizons. We
therefore extend our training set-up to incorporate
multi-turn RL with dialogue-level reward.

Episode Formulation An episode corresponds
to a full dialogue, consisting of 71" user-system
turns. At the ¢-th step in the dialogue, we de-
rive the state and action with a formatter function
F(-) from Equations 14 and 16: the dialogue-level
state S; = F(sY) and dialogue-level action A; =
F(a¥L™1) (see Appendix A.3 for formatter de-
tails). This forms a sequence of state-action pairs
{(So,Ao), ..., (S7—1, Ar—1)} over the course of
the interaction.

Reward Modelling To guide long-term be-
haviour, we introduce dialogue-level reward sig-
nals based on task success and interaction effi-
ciency. We train two dialogue-level critic net-
works for our policy 7 parameterised by ¢ and :
state-action value function Qg(St,At) and state
value function V;7(S;). Both critics are based on
ALBERT (Lan et al., 2020), with a linear pro-
jection on the [CLS] token embedding to pro-
duce scalar value estimates. Following the Archer
framework (Zhou et al., 2024), they are trained to
minimise temporal difference (TD) error and en-
sure Bellman consistency using online experience
E=1{S, At,rtH,StH}tT:Bl collected during in-
teractions with a user simulator:
Lo = Eqaronel(Qa(s,a) = —1giaVa(s))?] 22
Ly = Eane [Eanry(10[(Vi(s) = Qs(5,0)°]]  (23)
The delayed target models ) ; and V; are updated
towards their current counterparts with Polyak av-
eraging (Haarnoja et al., 2018). For full critic
training details, refer to the work of Zhou et al.
(2024) and Appendix A.3.

Task Completion Optimisation Given the
trained critics, we compute the advantage estimate
at each ¢-th turn using:

A = Q3(Se, Ar) — Vi (Se) (24)
This value measures how much better a particu-
lar action is compared to the expected return of
the current state. We then use this advantage sig-
nal in the same PPO optimisation framework as
described in the set-up for emotion reward (Sec-
tion 3.3.2), replacing the emotion-based advantage
with this task-oriented multi-turn advantage.

Combined Reward The single-turn (Equation
19) and multi-turn reward (Equation 24) signals
are combined for selected sequences from Equa-
tion 18 using a weighted sum with mixing param-
eter p (set to 0.1 in practice):

Rcombine,t = pAs + TtL (25)

Off-policy Experience Replay Due to the high
computational cost of simulated interactions, we
maintain an experience buffer and apply impor-
tance sampling (IS) (Precup et al., 2000) to reuse
off-policy data. A constant buffer size is en-
forced using reservoir sampling (Isele and Cos-
gun, 2018). The IS weight is defined as:

Tonew (At|St
o= o014 ((At |‘St)) (26)
In practice, computing IS weights over long se-
quences can be numerically unstable due to the
sharp trajectory distribution of LLMs. This of-
ten leads to high variance in IS weight estimates,
even when the behavior and target policies only
diverge slightly. To mitigate this, we compute IS
weights only over intents and slots of dialogue ac-
tions dag intent+siot> and clip them to [1 — 7, 1 + 7]
withp = 0.9:
T Onew (dat,intent+slot |St)
0414 (dat,intent+slot |St)
When deploying experience replay, we multiply
the corresponding reward for past experiences
(Equation 24 or 25) with IS weight &;.

. = clip Jd-n14n) @D

4 Experiments Set-up

4.1 ToD Systems

Based on design considerations discussed in Sec-
tion 1, we consider the following ToD systems.
System configurations are summarised in Table 1.

Naive Baseline

Chitchat-ToD has a 3B Phi-3.5-mini back-
bone and is trained to generate response directly,
omitting all sub-tasks and the interaction with the
database. We aim to investigate if an LLM can
memorise the database solely from the corpus.

Agentic System

FnCTOD (Li et al., 2024) is an agentic system
with a prompt-based zero-shot generation pro-
cess: DST, database query, and response genera-
tion. We follow the prompt specified in the origi-
nal paper and use GPT-4o0-mini (2025-04-16).



Architecture Optimisation Dialogue State Dialogue Action Emotion

RL Objectives Training Env #Param

Sent Succ
Chitchat-ToD E2E E2E Implicit Implicit Implicit - - NA 3.82B
FnCTOD (2024) Agentic No Explicit Implicit Implicit - - NA 8B(est.)
Modular-base (2022) Modular Modular Explicit Delexicalised No + - EmoUS 413M
Modular-emotion (2024a) Modular Modular Explicit Delexicalised Explicit + + EmoUS 54T
SimpleLoop (2022) Modular Loop Explicit Delexicalised No + - langEmoUS 413M
EmoLoop (2024a) Modular Loop Explicit Delexicalised Explicit + + langEmoUS  547M
SimpleLLAMA (2024)  E2E E2E Explicit Delexicalised Implicit - - NA 7.02B
EmoLLAMA (2024) E2E E2E Explicit Delexicalised Explicit - - NA 7.02B
LUSTER-base E2E E2E Explicit Lexicalised Implicit - - NA 3.82B
LUSTER-base-emotion ~ E2E E2E Explicit Lexicalised Explicit - - NA 3.82B
LUSTER-RL(sent) E2E E2E Explicit Lexicalised Explicit - + langEmoUS 3.82B
LUSTER-RL(succ) E2E E2E Explicit Lexicalised Explicit + - langEmoUS 3.82B
LUSTER E2E E2E Explicit Lexicalised Explicit + + langEmoUS  3.82B

Table 1: System configurations of ToD systems as discussed in Section 1. Architecture: end-to-end (E2E),
Modular, or Agentic. Optimisation: Modular optimisation following Figure 2a, Loop optimisation following
Figure 2b, end-to-end (E2E) following Figure 2¢,2d or No task-specific optimisation. Dialogue State: Explicit
representation or /mplicit model hidden representations. Dialogue Action: Delexicalised where no slot values
in policy output, Lexicalised where slot values are included, or Implicit model hidden representations. Emotion:
Explicit policy input/output, Implicit consideration from natural language, or Not perceived nor expressed by the
policy. RL Objectives: RL using Sentiment or task Success reward signal. Training Environment for RL training:
NA when no RL involved, EmoUS for semantic interaction, and langEmoUS for natural-language interaction. For
number of parameters #Param, the size of GPT-40-mini used as FnCTOD backbone is estimated.

Modular Systems with Modular Optimisation

Modular-base has SetSUMBT DST (van Niek-
erk et al., 2021), DDPT policy (Geishauser
et al., 2022), and SEC-BART NLG (Feng et al.,
2024a). The policy is trained via RL using se-
mantic interaction with an emotional user simu-
lator EmoUS (Lin et al., 2023), receiving a suc-
cess signal (Figure 2a).

Modular-emotion has all components of
Modular-base with additionally user emo-
tion (Feng et al., 2023) as policy input and
system conduct as policy output. The policy also
receives turn-level user sentiment as reward.

Modular Systems with Loop Optimisation

SimpleLoop has the same architecture as
Modular-base but its RL training involves suc-
cess reward from natural-language interaction
(Figure 2a) with an emotional user simulator
langEmoUS (Feng et al., 2024a).

EmoLoop has the same pipeline set-up as
Modular-emotion and the same training set-up as
SimpleLoop with an additional turn-level senti-
ment reward signal.

Delexicalised End-to-end Systems
SimpleLLAMA (Stricker and Paroubek,

2024) follows the best set-up of Sim-
pleTOD (Hosseini-Asl et al, 2020) to

auto-regressively generate the state, dia-
logue action, and response. It uses the 7B
LLAMA-2-chat (Touvron et al., 2023) as the
backbone. It generates delexicalised dialogue
actions and responses, and it is trained via SL on
the corpus.

EmoLLAMA has two more emotion-related
sub-tasks than SimpleLLAMA: user emotion
recognition and system conduct selection.

LUSTER and its Variants

LUSTER-base completes non-affective ToD
modelling sub-tasks as listed in Figure 3. It uses
a3B Phi-3.5-mini and generates lexicalised
actions and responses.

LUSTER-base-emotion has two more affec-
tive sub-tasks than LUSTER-base: user emotion
recognition and system conduct selections.

LUSTER-RL(sent) is based on LUSTER-base-
emotion and incorporates RL with turn-level
sentiment reward as discussed in Section 3.3.2.

LUSTER-RL(succ) is based on LUSTER-base-
emotion and incorporates RL with dialogue-level
success reward as discussed in Section 3.3.3.

LUSTER is based on LUSTER-base-emotion
and it incorporates RL using both turn-level sen-
timent reward and dialogue-level success reward.



4.2 Training and Evaluation Environment

All systems or sub-modules are trained on
EmoWQOZ (an extended version of MultiwOZ).
Interactive evaluation is carried out using
ConvLab-3 toolkit (Zhu et al., 2023). The natural-
language user model consists of TSNLU (Zhu
et al., 2023) and langEmoUS (Feng et al., 2024a).
TSNLU reports a slot F1 of 86.5%, putting
extra emphasis on the clarity of the system’s
natural-language responses. LangEmoUS is a
state-of-the-art user simulator and reports a macro
F1 of 52.1% on emotion prediction. Details about
hyperparameters and computing resource can be
found in Appendices A.1 and A.S.

We simulate 3000 dialogues per system during
evaluation. We report the success rate (judged by
the ConvLab-3 evaluator) and the average senti-
ment (predicted by the user simulator). For suc-
cess evaluation, the evaluator verifies whether the
user’s goal has been met. This includes checking
database constraints and ensuring that a booking
was made as specified. The sentiment score is as-
signed for each turn as follows: +1 if the user
is classified as “satisfied”, —1 if “dissatisfied” or
“abusive”, and 0 otherwise.

5 Results and Discussion

5.1 Model Performance

Success (1) Sentiment () Error ()
Chitchat-ToD 20.5% 0.368 NA
FnCTOD 32.3% 0.229 NA
Modular-base 31.8% 0.335 5.35%
Modular-emotion 33.0% 70.345  15.14%
SimpleLoop 35.2% 0.346 4.74%
EmoLoop 37.2% 70.380  §3.36%
SimpleLLAMA 33.0% 0.214 5.11%
EmoLLAMA 34.2% 10.250  13.68%
LUSTER-base 47.2% 0.298 1.73%
LUSTER-base-emotion 47.5% 10.310 11.38%
LUSTER-RL(sent) +49.8% 10.345 1.79%
LUSTER-RL(succ) +50.8% 10.324  11.51%
LUSTER 51.2% 10.316 1.77%

Table 2: Task success, user sentiment, and concept er-
ror rate of all systems. Best scores across all systems
are bolded. fdenotes statistically significant improve-
ment (p<0.05) from the first system within each group.

Chitchat-style or agentic model lacks the
optimisation necessary for goal-oriented task
completion. Chitchat-ToD performs poorly on
success rate (20.5%) despite generating positive

sentiment, as it often generates ungrounded con-
tent that appears helpful but fails to meet the
user’s search constraints. This underscores that
smooth, engaging interactions alone are insuffi-
cient. FnCTOD, despite comparable success rate
to some systems (32.3%), falls short on user sen-
timent, likely due to its overly informative and
less engaging language (see Section 5.2). These
findings suggest effective task fulfillment requires
both fact-driven database access and emotionally
attuned interaction strategies.

Loop-based optimisation enables more co-
herent behaviour. SimpleLoop and EmoLoop,
which train policies within the full natural-
language interaction loop, outperform their modu-
larly trained counterparts despite having the same
architecture. This shows that loop optimisation
provides holistic feedback, leading to more coher-
ently optimised behaviours.

Emotion modelling improves user sentiment
across architectures. Across both modular (e.g.,
SimpleLoop vs. EmoLoop) and end-to-end (e.g.,
SimpleLLAMA vs. EmoLLAMA) systems, incor-
porating user emotion recognition and system con-
duct prediction consistently improves user senti-
ment. EmoLoop achieves the highest sentiment
score, highlighting the effectiveness of affect-
aware modelling for generating emotionally intel-
ligent responses.

Lexicalised systems enable better grounding
and task success. LUSTER variants significantly
outperform delexicalised ones in both success and
error rates. Providing full lexical access to slot val-
ues improves grounding and overall task effective-
ness. This suggests that while symbolic abstrac-
tions such as dialogue states and actions remain
useful, the enhanced reasoning and representation
capacity of LLMs benefits from direct access to
lexical content, enabling more accurate and con-
textually consistent responses.

RL enhances task success and user sentiment
of LUSTER variants’ performance. Incorporat-
ing turn-level sentiment rewards boosts user sen-
timent, while dialogue-level success signals in-
crease task success to 50.8%. The full model,
LUSTER, optimises both objectives, achieving the
highest task success (51.2%) while maintaining
stable sentiment and concept error. This demon-
strates the effectiveness of hierarchical RL in bal-
ancing short-term emotional response with long-
term goal achievement.



5.2 Linguistic Style

#Turns #Tokens Vocab LogTTR

Chitchat-ToD 17.4 12.9 4,114  0.853
FnCTOD 6.3 29.9 1,301 0.831
Modular-base 16.3 14.0 2,333 0.823
Modular-emotion 16.2 14.2 2,486 0.824
SimpleLoop 15.3 12.8 3,628 0.833
EmoLoop 145 11.6 2,256 0.845
SimpleLLAMA 14.6 13.7 2,109  0.834
EmoLLAMA 14.0 12.8 2,035 0.838
LUSTER-base 11.1 11.2 1,841 0.881
LUSTER-base-emotion 11.4 11.3 1,928 0.873
LUSTER-RL(sent) 11.3 11.0 2,043 0.877
LUSTER-RL(succ) 11.6 12.4 2,048 0.870
LUSTER 11.5 12.5 2,026  0.872

Table 3: Average number of user-system exchanges per
dialogue (#Turns), average number of tokens per sys-
tem turn (#Tokens), average number of unique tokens
(Vocab), and average log type-token ratio (LogTTR)
per dialogue of all systems.

Chitchat-ToD takes the most turns per dialogue
(17.4 on average) due to the lack of database
grounding for effective user goal fulfillment. In
contrast, FnCTOD, completes dialogue on av-
erage in 6.3 turns using overly informative re-
sponses (nearly 30 tokens per turn). Loop-
optimised systems ({Simple,Emo}Loop), com-
pared with their modularly trained counterparts
(Modular-{base,emotion}), achieve better perfor-
mance with fewer turns, highlighting the better ef-
ficiency of policies as a result of natural-language
optimisation. LUSTER variants, benefiting from
lexicalised end-to-end modeling and RL, are the
most efficient. They achieve overall best success
with an average around 11 turns.

Most systems use around 2,000 unique tokens,
reflecting lexical compactness for efficient and
goal-directed interactions. SimpleLoop uses over
3,600 tokens due to frequent but unnecessary men-
tions of phone numbers. Chitchat-ToD, being
open-ended and unconstrained, uses the largest
vocabulary (4,114). FnCTOD has the smallest
(1,301) because of long templated responses.

We also measure the within-dialogue log ra-
tio between the number of unique and total to-
kens (LogTTR) for a fairer comparison of lexi-
cal diversity. LUSTER variants generally achieve
high LogTTR (> 0.87), indicating greater within-
dialogue lexical variation. In contrast, systems
like Modular-base exhibit lower diversity despite
larger vocabularies than LUSTER.

5.3 System Comparison Using LLLM Raters

LUSTER variants outperform other models in task
success and concept error (Table 2). However,
differences among LUSTER variants are small,
likely due to limitations of the rule-based eval-
uator and pretrained user simulator in capturing
fine behavioural nuances. To obtain more sensi-
tive and human-aligned assessment, we employ
proprietary LLMs as judges. Each system in-
teracts with the user simulator under the same
user goal. Their dialogues are presented in ran-
dom order to GPT-40-mini (2025-04-16) and
Deepseek-R1 (2025-05-28), tasked with identi-
fying the better system (see Appendix A.6.1).

opTao-mini |

0% 25% 50 % 75 % 100 %
M Win M Tie Lose

Figure 4: LUSTER vs. LUSTER-base-emotion.

Figure 4 shows the win-rate comparison be-
tween LUSTER and its non-RL counterpart,
LUSTER-base-emotion for 500 dialogues. Both
LLM raters exhibit a clear preference for LUS-
TER: GPT-40-mini attributes a strong majority
of wins to LUSTER, while Deepseek-R1 also
favors LUSTER, albeit with a more moderate mar-
gin. These results confirm that RL contributes to
nuanced yet perceptible improvements in conver-
sational quality. Appendix A.6.2 exemplifies how
LLMs identify behavioural nuances.

6 Conclusion

In this work, we systematically investigate the de-
sign dimensions of ToD systems, spanning archi-
tectural choices, optimisation strategies, represen-
tation, and emotion modeling. Through experi-
mentation across modular, end-to-end, and agentic
systems, we find that no single design axis alone
guarantees optimal performance. Instead, efficient
task success, user satisfaction, and semantic ac-
curacy emerge from their thoughtful combination.
Our proposed LUSTER system demonstrates this
by integrating lexicalised generation, emotion-
aware modeling, and hierarchical reinforcement
learning, achieving a significantly higher task suc-
cess rate and overall balanced performance. These
findings underscore the importance of holistic,
end-to-end, yet structured design in building con-
versational agents capable of effective and emo-
tionally intelligent task completion.
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A Supplementary Information

A.1 Computing Resources

All modular systems were trained and deployed using a single NVIDIA RTX 2080 (8GB) graphics
processing unit (GPU). The end-to-end systems SimpleLLAMA and EmoLLAMA were trained and
evaluated on an NVIDIA A100 (80GB) GPU. LUSTER variants were trained on a single NVIDIA A100
(40GB) GPU, with inference requiring at least an NVIDIA RTX 6000 (24GB) GPU. While training LUS-
TER demands more computational resources than modular systems, it remains more resource-efficient
than LLAMA-based end-to-end models.

A.2 Proximal Policy Optimisation for Single-turn RL

The advantage function A(s,a) denotes the difference between the action-value function Q(s,a),
which is the expected return when taking action « in state s and from then on following the policy 7 and
the state value function V(s), which is the expected return of state s for policy 7.

Ar(s,a) = Qx(s,a) — Vz(s) (A.1)

In the context of single-turn response generation with an episode length of L (Equation 14) for the ¢-th
interaction of a dialogue with a policy parameterised with 6,

L—1-1
Qry(5,a) = Eqp, erft)s = sb,a = al] (A.2)
k=0
L—1-1
Vg (8) = En, rryts = si (A.3)
k=0
Al = Qr,(5,0) = Vi, (s) (A4)

The surrogate loss consisting of the clipping term and the KL-penalty term is given by:

l l l l
Lppo = E; [min (77@(%1\ Stg Al clip (We(atl| St? 1—e€ 14 6> Ai)
Mot (ay ’ St) T0o1a (ay ‘ $t>

—B: Zﬂ—aold<a ’ Sé) log (W) }’

mo(a | s})

(A.5)

where clip(z, a, b) ensures that « is within the interval [a, b]. The gradient of the surrogate loss (Eq A.5)
approximates the direction of the policy gradient (Eqn 21).
To estimate advantage function Ay needed for the surrogate loss, generalised advantage estimation is
used:
L—j-1
Al= 3" (N 67 where 8 = r{ + umVa(st11) — Viry (51) (A.6)

Jj=

Parameter A € [0, 1] trades off bias (lower \) and variance (higher ). V7, is initialised with the reward
model Ry for complete sequences, and parameters ¢ are updated in such a way so that V;, estimates
observed returns for partial sequences. In this way, the critic parameterised with ¢ influences the actor
parameterised with 6. We follow default hyperparameters in the PPO trainer of TRL library, which
follows Ouyang et al. (2022a).

PPO is an online learning algorithm, which means it needs to adopt exploration during the process of
optimisation. That is achieved by applying a temperature parameter to the softmax layer of policy my to
induce more varied responses.

In practice, the critic is modelled by a single-layer value head attached to the output of the language
model. It projects the logits of the token into a scalar. The input for calculating Vy,(s) is the logit of
the last token in s, and that for calculating (., (s, a) is the logit of a, since the action a is the next token
generated.



A.3 Dialogue-level Critics
A.3.1 Architecture
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Figure A.1: Dialogue-level Critics

Figure A.1 illustrates the modelling of dialogue critics. We format the dialogue-level state S; and
action A; from the generated sequence s and a%:L ~1 to obtain a compact input to the critic.

Textual State Representation The input to the state value function is in the form of the following:

<domain> <slot> < “inactive”| “informed”| “unknown”> ; ... [SEP]“N <domain> found”|“no entity
found”|*“database not available” [SEP] “system :” usys ;1 [SEP] “user :” uygr ¢

The first segment contains the system’s belief about the user’s goal. Instead of actual informed value,
we limit the status of each slot to be one of the three: informed, unknown if not informed, or inactive if
the <domain> is not the active domain determined by the system <domain> # d;.

The second segment contains a summary of the database query status. The status informs the number
of entities returned NV for N > 0 or informs “no entity found” if N = 0. There is a special case when the
active domain is “general” for small-talk and greetings. Under such circumstances, the status informs
“database not available”.

To account briefly for the dialogue history, we also include the previous system and user turns usys ;1
and Uygr .

Textual Action Representation The formatted action for the state-action value function is in the form
of the following. Values are excluded.

<domain> <intent> <slot> ; ...
A.3.2 Training

Following the objective functions defined in Equation 22 and 23, for each critic update step:

¢ ¢ —VJy(Q) (A.7)
P — Vy(V) (A.8)

Parameters of target critics are then updated via Polyak averaging (Haarnoja et al., 2018):

P (1—1)p+79 (A.9)
Y (1—7)p+ 19 (A.10)



A.4 Pseudo Code

Algorithm 1 LUSTER Training

[N I NS I NS I S R e e et e i
N A R o I sl =

()
AR

27:
28:
29:
30:
31:
32:

)
N

: Initialise parameters 6, ¢, 1), ¢, 1)
: ## Actor Pretraining using EmoWOZ
: for each actor step do

0+ 0—V_Ls > Equation 12

: end for
: ## Critic Pretraining using EmoWOZ, not applicable when using emotion advantage only.
: for each critic step do

## Update utterance-level Q and V functions by target function bootstrapping.

¢ ¢d—VLq > Equation 22

1 —VLy > Equation 23

## Update target Q and V functions via Polyak averaging.

o (1—=1)p+70 > Equation A.9

(=7 + 7 > Equation A.10
: end for

: ## Initialise and fill experience replay buffer D
: for each dialogue while buffer_size not reached do

for each turn do

Execute a?:L 1~ 7 (- |5?), obtain the next state sgﬂ and reward {rL, A, or Rcombine, ¢ }» add to buffer D.
end for
: end for

: for each iteration using buffer D do

Repeat line 17-21 until D is full.
Repeat line 7-14 for critic update.
for each off-policy experience do
Replay experience and sale reward with importance sampling weight. > Equation 27
end for
## Update token-level actor with utterance-level critic.
for each actor step do
0 <+ 6 — VLppo > Equation 21, approximated with A.5
end for
Discard oldest experiences based on specified Training Interval to make room for new experiences
end for

A.5 Training Configurations

The predefined set for token selection in the following equations are:

In Equation 2, ' ={neutral, fearful, dissatisfied, apologetic, abusive, excited, satisfied}, defined in the

EmoWOZ (Feng et al., 2022).

In Equation 3, D ={general, restaurant, hotel, train, attraction, taxi, police, hospital}, which includes

the seven EmoWOZ domains plus an additional “general” domain to handle small-talk and greetings.

In Equation 10, C' ={neutral, compassionate, apologetic, enthusiastic, appreciative} as defined in

EmoWOQZ 2.0 (Feng et al., 2024a).

Parameter Value
Learning Rate 3e-5
Training Epochs 10
Batch Size 32
LoRA Rank 32
LoRA Alpha 32
LoRA Dropout 0.1
LoRA Bias None

LoRA Target Modules  o_proj, gkv_proj

Table A.1: Supervised Training Hyperparameters



Parameter Value

Critic Learning Rate 5e-5

Critic Batch Size 32

Critic Epochs 5

Critic Gradient Norm Clipping 40

Actor Learning Rate le-7

Actor Batch Size 16

Actor Sample Size (Equation 18) 6

Actor Sample Temperature (dialogue action da) 0.5

Actor Sample Temperature (response sys) 0.9

Actor History Length 5

Training Interval 10 Dialogues
Experience Buffer Size 50 Dialogues
Reservoir Sampling True

User Utterance and Emotion Sample Size (Equation 18) 6
Dialogue-level Discount Factor ~ygiai (Equation 22) 0.99

Reward Combination Weight p (Equatiuon 25) 0.1
Importance Sampling Weight Clipping Range 1 (Equation 27) 0.9
Turn-level Discount Factor ywum (Equation A.6) 1.0

Decay Rate \ 0.99
Dialogue-level Reward (Equation (22) re = —1for0 <t < T, rr = +80 if success else -40
Polyak Averaging Weight 7 (Equation A.9, A.10) 0.01

Table A.2: Reinforcement Learning Configurations

A.6 System Comparison

A.6.1 Prompt Template

There are two systems system_A and system_B. The user talks to each of them to complete the
same information retrieval goal. You are now act as a judge that determines which system has
better overall performance.

The dialogue between the user and system_A in json list form is: {system_a_dialogue}
The dialogue between the user and system_B in json list form is: {system_b_dialogue}

Now, output your judgement together with explanation in the following format:

{

“judgement”: “which system is better, system_A or system_B? If you really cannot decide, you
can output ‘tie’.”,

“explanation”: “Why one system is better. Your analysis should be based on the success of the
dialogue, the informativeness of the system responses, and the system emotional performance
to enhance user experience. You can also consider the length of the dialogue, the diversity of
language, and whether the system provided relevant information to the user.”

/

A.6.2 Case Study

The simulated user goal is described in the JSON format below where the user’s goal is to retrieve
resquestable information based on informable constraints:

{

"restaurant”: {
"infomable": {
"area": "centre",
"pricerange": "moderate"

I

"requestable": {"postcode": "7"}



|2
"train": {
"infomable": {
"arriveBy": "20:45",
"day": "thursday",
"departure": "broxbourne",

non

"destination": "cambridge"

}

"requestable": {"trainID": "?"}

}
The conversation between the simulated user and LUSTER-base-emotion system is:

User : I'm looking for a restaurant in the centre of town.

LUSTER-base-emotion : there are 69 restaurants in that area. what type of food would you like?
User : I would like a moderately priced one please.

LUSTER-base-emotion : there is 21 of those. what type of cuisine would you like?

User : Could I have the postcode of one of them?

LUSTER-base-emotion : sure, the postcode is cb21db.

User : Thank you. I also need a train. I need to leave for cambridge on Thursday and arrive by 20:45.
LUSTER-base-emotion : where will you be departing from?

User : I will be departing from broxbourne going to cambridge.

LUSTER-base-emotion : tr0393 leaves at 05:32 and arrives at 06:32. would you like to book that for
1 person?

User : thank you. bye

LUSTER-base-emotion : thank you for using our service.

Under the same goal, the conversation between the simulated user and LUSTER system is:

User : I am looking for information on a place to eat that is in the centre.
LUSTER : there are 69 restaurants in that area. what type of food would you like?
User : Any kind of food in the moderate price range would be fine.

LUSTER : there is 21 of those. what type of cuisine would you like?

User : I don’t have a preference on cuisine, I just need the postcode.

LUSTER : pizza express has the postcode cb21db.

User : Great! Thank you. I also need a train on Thursday that is arriving by 20:45.
LUSTER : where will you be departing from?

User : I will be departing from broxbourne going to cambridge.

LUSTER : tr0393 leaves at 05:32 and arrives at 06:32. would you like me to book that for you? how
many tickets do you need?

User : thank you. bye

LUSTER : thank you for using our service. goodbye.

Both systems fulfill the user goal by correctly providing requestable information: postcode=cb21db
and trainID=tr0393. Convlab-3 evaluator marks both conversation as successful, and the user simulator,
langEmoUS, gives the same sentiment rating in each turn. Despite this, GPT-40-mini prefers LUSTER
over LUSTER-base based on more nuanced system behaviours as highlighted in blue colour above with
the following explanation:

LUSTER outperforms LUSTER-base in several key areas.

Firstly, LUSTER provides a specific restaurant name (Pizza Express) along with the postcode, which
adds a layer of useful information for the user that LUSTER-base lacks, as it only provides the postcode
without a specific restaurant name associated with it.

Secondly, LUSTER uses slightly more user-friendly language, such as ‘how many tickets do you
need?’ which invites the user into the conversation and indicates a more engaging approach.

In terms of emotional performance, LUSTER ends the conversation with a more polite ‘goodbye’ which
may enhance user experience by making it feel more personal. Overall, LUSTER demonstrates better
informativeness, engagement, and emotional connection with the user, leading to a more successful
interaction.



